
How to Build the jobCent Application Using Our Developer Tools 
 

This walkthrough will guide how to build your own ​jobCent Application​.  
 
You can use this to recreate our app, or modify these steps as needed to accommodate your 
own application ideas.  
 
Step 1 - Install and Setup Necessary Packages 
To build this project we need to install the following tools and libraries.  

1. PostgreSQL: 
a. Use ​this resource​ to gain access to the PSQL shell terminal 
b. Set defaults as follows:  port=5432, password=”dickey”, user=”postgres”  

2. NodeJS: 
a. Download here​.  
b. Run the following commands on a separate terminal window to make sure 

installation succeeded  
i. npm -v 
ii. node -v 

3. nCent Sandbox Repo: 
a. In the terminal, run:  

i. git clone ​https://github.com/ncent/ncent.github.io.git 
b. Install the Sandbox dependencies by running the following commands: 

i. cd ncent.github.io 
ii. cd Sandbox/Sandbox\ API 
iii. npm install 

4. jobCent Dependencies:  
a. Return to the root of the ncent.github.io directory 

i. cd ../.. 
b. Go to the Applications folder 

i. cd /applications 
c. Create a new jobCentEmail folder: 

i. mkdir jobCentEmail 
ii. cd jobCentEmail 
iii. Our Folder 

 
d. Initialize client-level node dependencies and packages.json file 

i. npm init -y 

https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://nodejs.org/en/download/
https://github.com/ncent/ncent.github.io.git
https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail


 
 

e. Install the nCent SDK: 
i. In your files, to use the SDK, just write “const ncentSDK = 

require(‘{path_to_nCentSDK.js}’), which is located ​here  
 
Additional Resources​: 

● nCent SDK installation tutorial 
● Install PostgreSQL & Setup First Database Tutorial 
● nCent Sandbox repository 

 
Pro tip:​ npm install --save will automatically save anything you npm install to the dependency 
section of your package.json file 
 
 
Step 2 - Setup our Sandbox Environment Database Locally 
 
Test your application using a local instance of our ​Sandbox​. 

1. Open PSQL shell and login with the permissions you set up in step 2  
2. List all the databases by the following command in the shell using the following 

command:  
a. \l 

3. Create a database instance for the Sandbox with the command: 
a. CREATE DATABASE “ncnt-dev”; 

https://github.com/ncent/ncent.github.io/blob/master/SDK/source/ncentSDK.js
https://youtu.be/Z4jYSvmXuZg
https://www.youtube.com/watch?v=xaWlS9HtWYw
https://github.com/ncent/ncent.github.io.git
https://github.com/ncent/ncent.github.io/tree/master/Sandbox


 
4. Connect to your newly created database instance: 

a. \connect “ncnt-dev” 
5. If you configured your permissions in step 2 differently, go to ​Sandbox/Sandbox\ 

API/config/config.json​. Ensure that your information in the “development” object 
matches your setup in PostgreSQL 

 
6. Now, let’s migrate the schema into the database. In your current terminal, make your 

current directory ​server​ under ​Sandbox\ API​ and run:  
a. ../node_modules/.bin/sequelize db:migrate 

7. You should see the following in your terminal: 



 
8. Then, go back to the PSQL shell and check that you have the right tables:  

a. \dt 
9. Your terminal should have printed the following: 

 
10. Run the following command to see that the table is empty:  

a. select * from “table_name”; 

 
 

Additional Resources: 
● nCent Tutorial video​ (coming soon) 
● PostgreSQL documentation 
● PostgreSQL video tutorial 

 
PRO-TIP:​ Do not use ​createdb​ command in the terminal. Create the database only in PSQL 
shell with the ​CREATE DATABASE “database_name”​ command. Using ​createdb​ will make 
duplicate databases that are disjointed. 

 
 

Step 3 - Run the Sandbox and Test the Environment 

https://www.postgresql.org/docs/10/static/app-psql.html
https://www.youtube.com/watch?v=jNq5EAb2biY


1. Enter the following command from your Sandbox terminal 
a. npm run start:dev {path to your Sandbox} 

2. You should see the following: 

 
3. If any errors appear enter the following command:  

a. rs 
4. Now, open another terminal and go to the SDK directory in your local git repository. 
5. Use the following command to test the tables in the database: 

a. node test.js 
6. You should see the following: 

 
7. Now, we will clear the database. In your terminal with the sandbox is running, enter the 

following commands: 
a. ctrl-c  
b. node_modules/.bin/sequelize db:migrate:undo:all 
c. node_modules/.bin/sequelize db:migrate  

8. Now, your tables will be empty. Check the tables on your shell to see that it is clear. 
 
Resources​:  

● nCent Video Tutorial on testing the SDK 
● Sequalize documentation 
● Sequalize tutorial video 

 
PROTIP​: Often, when you are testing your backend, it can help to clear your  
database for easier visibility into how your data is being handled. In order to do  
this, use the command ​DROP DATABASE <table_name>;  
 

https://youtu.be/n8jKqaoZzZI
http://docs.sequelizejs.com/
https://www.youtube.com/watch?v=qsDvJrGMSUY


Step 4 - Set up the jobCent Database 
 

Like the blockchain technology it mirrors, our Sandbox environment and SDK only manage 
wallet address and transaction information, in addition to token stamping. At the application 
level, like with jobCent, we need a friendly way to link wallet address with user accounts. 
Therefore, we need a jobCent database to store user information such that a user could log in 
with an email and password and be linked to wallet credentials.  

 

 
 

We used a Node.js environment for development of ​jobCent​. Make sure to ​install Node.JS​ and 
npm. 

1. Follow ​our tutorial​ for setting up a server 
a. Make the directory for your project. Include a bin and a server folder 
b. Initialize your directory 

i. npm init -y 
c. If you haven’t already, install express, body-parser, and morgan npm packages 

i. npm install express body-parser morgan 
d. Create an app.js file like the following: 

https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail
https://nodejs.org/en/download/
https://www.youtube.com/watch?time_continue=5&v=2OSkyqxNivM


 
e. Make a file called ‘www’ in the bin folder like the following: 

 
f. Use nodemon so that your server restarts every time you change code  

i. npm i -D nodemon 
g. Navigate to your package.json file, and under the scripts section add 

i. "start:dev": "nodemon ./bin/www" 
h. Run the following command: 

i. npm run start:dev 
i. Navigate to localhost:8000 to see your default message 

2. Ensure you have sequelize installed: 
a. npm install --save sequelize pg pg-hstore 

3. Initialize sequelize: 
a. sequelize init 

4. Create your database: 
a. createdb ‘database_name’ 

5. Create your models:  
a. Execute the following command 

i. sequelize model:create --name ‘{model_name}’ --attributes title:string 
b. This is to create a model with a single string attribute that is the title. You can add 

more attributes later on in the file or list them in this command 



c. Do this for each model you would like to create 
d. This will also create your migrations 

6. Migrate your database:  
a. sequelize migrate 

7. Create controllers: 
a. Require the relevant models 
b. Develop the functionality of the controller by writing the methods you will need. 
c. See example below: 

 
8. Create an index.js file in controllers and export all your controllers 

a. Navigate to the controllers 
i. cd controllers  

b. Create an index.js file 
i. touch index.js 

c. Add the following to your index.js file: 
``` 
const controller_name = require('./controller_name’); 
 
module.exports = { 
 controller_name 
}; 
``` 
*Replace controller_name with the name of your controllers. Make sure you do 
this for all of your controllers. 

9. In the index.js file in the routes folder,  
a. Require and define all the controllers  



b. Define your routes and the methods they will use from the appropriate 
controllers. 

c. As an example (where wallet is a model): 
‘’’’ 
const walletController = require('../controllers').wallet; 
app.get(‘/getBalance’, walletController.getBalance);  
‘’’’ 

d. You must decide whether it will be a post (for creating new information), put (for 
updating information), or get (for retrieving information), then add the route as a 
string for the first parameter and the controller_name.functionName as the 
second parameter. 

10. Require the routes you just made in the app.js file with this code: 
require('./server/routes')(app); 

 
Additional Resources: 

● nCent Labs tutorial on setting up your server 
● Getting started with node express and postgres using sequelize 
● Firebase tutorial video 
● Official docs 
● Official "getting started" guide 
● Getting Started with Node.js 

 
PRO-TIP​: For speed, you can use a free server such as Firebase to get your app running 
quickly. 
 
PRO-TIP 2:​ Read up on Package.json files to get a better understanding of node and how it 
works. 
 
Step 5 - Create and Configure Google Oauth Client 

 
1. Go to ​Google Cloud Console​ and sign in with your Google account. You should see 

this: 

 

https://www.youtube.com/watch?time_continue=5&v=2OSkyqxNivM
https://scotch.io/tutorials/getting-started-with-node-express-and-postgres-using-sequelize#generating-models
https://www.youtube.com/watch?v=9kRgVxULbag
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://scotch.io/tutorials/getting-started-with-node-express-and-postgres-using-sequelize
https://console.cloud.google.com/apis/


2. Click on the “Create Project” button and name your project 

 
3. On the window that appears, click “Create Credentials”, then “0Auth client ID” as 

shown below: 

 
4. The following screen will appear, where you will need to fill in your email address and 

“Product name shown to users”. The rest is optional. 



 
5. Name your client and the application type. 



 
6. Click “jcent” to see your client ID, and client secret. It should look like the below 

screenshot, and store this information in the jobCentEmail directory you created by 



clicking “Download JSON”

 
Additional Resources 

● 0Auth2 docs 
● How to create Google 0Auth2 client ID  

 
PRO-TIP​: Never reveal your client secret to anyone. (We our client secret above so you can’t 
use ours :) 
 
 
Step 6 - Setup Google Service Account for PubSub 
 

https://developers.google.com/adwords/api/docs/guides/authentication
https://www.youtube.com/watch?v=RpvW6ckK6w0


1. Go back to the console home page and click on create credentials again, but this 
time, select “Service Account Key”

 
2. Configure as follows and press create - you would now have a json file 

downloaded - store that in jobCentEmail.  
a. Do not share this either - it contains the private key to your service account 

 
 
 
Additional Resources 

● Setting up Google Play API access 
● Set up an API account for 0Auth2 
● Creating and Using Service Accounts video 

 
PRO-TIP​: Read up on PubSub in this link: ​https://cloud.google.com/pubsub/docs/overview 

https://developers.google.com/android-publisher/getting_started#setting_up_api_access_clients
https://documentation.brightspace.com/EN/integrations/google_apps/admin/api_project_service_account.htm
https://www.youtube.com/watch?v=tSnzoW4RlaQ
https://cloud.google.com/pubsub/docs/overview


 
 
Step 7 - Setup Primary jobCent Script 
 

1. Install and initialize Google Cloud SDK 
a. Download​ the Google Cloud SDK 
b. Add cloud SDK tools to your path 

i. ‘​./google-cloud-sdk/install.sh’ 
c. Restart your terminal 
d. Run the following in your terminal 

i. gcloud init 
e. Accept the option to log in using your Google user account 
f. Select the project (if you only have one, it will be chosen for you) 

2. Create a pubSub topic/subscription by running the following commands 
(replacing appropriate placeholders with desired names):

 
 

3. Now we are ready to create our index.js in the jobCentEmail directory and configure it as 
below:

https://cloud.google.com/sdk/docs/quickstart-macos


 
Here is a link to our ​index.js 

4. For SERVICE_FILE, put the name of the JSON file you downloaded in Step 6 for the 
Google service account.  

5. For PROJECT_ID, put the id of your project which you can find on the Google Developer 
console. 

6. For OAUTH CLIENT ID and CLIENT_SECRET, put the client id and secret that you saw 
when you pressed jcent in Step 5 earlier. 

7. Run the following for any modules required above 
a. npm install --save {module_name} 

 
Additional Resources:  

● Our index.js Implementation  
● RequireJS Documentation  
● Google Cloud SDK Quick Start - Mac 
● Google Cloud SDK Quickstart - CLI 

 
PRO-TIP: ​It is best to write your “requires” into ​const​ variables, so that they are not able to be 
mutated. This is a common best practice when writing Javascript code.  
 

 

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js
https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js
https://requirejs.org/
https://cloud.google.com/sdk/docs/quickstart-macos
https://cloud.google.com/pubsub/docs/quickstart-cli


Step 8 - Initializing jobCent 
 

1. First, create a function called “main” in your ​index.js​ file.  
2. We will then initialize the application by stamping the jobCent token, followed by seeding 

the proper wallets with tokens.  
3. For integration with gmail, we need to open the authentication url for user consent and 

login and respond to it with a callback function. We named ours 
“getHomePageCallback”.  

4. Finally, we need to start listening on the gmail port.  
5. When steps 1-4 are completed, your code should look something like the below 

screenshot, where “initJobCent” is an abstracted function for stamping the token and 
seeding the wallets (more detail below):

 
6. We set up our “initJobCent” function - as seen below - by stamping the token and storing 

“token_id” as a global variable 

 
7. Remember to declare your “token_id” above the function closure so that it stores the ID 

globally across the file. 
8. Once the auth url is opened for the user and the user acknowledges the request, we can 

request an access token with the code that we get from the response. We then initialize 

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js


the email watcher.

 
9. A closer look at setting the credentials for the oauth2Client:

 



10. A closer look at setting up the gmail watcher. Ensure that under topicName, 
projects/PROJECT_ID is your own project id.

 
 
 
Additional Resources: 

● Gmail API Reference  
● Using OAuth 2.0 to Access Google APIs  

 
 

Step 9 - Syncing Messages with Email History 
1. After we get the Oauth credentials, we need to sync the existing inbox messages with 

the email history. Each time a new email is received, the ID of the email history gets 
updated, so we need to make sure that this record is always up to date. You can see our 

https://developers.google.com/gmail/api/v1/reference/users/messages#resource
https://developers.google.com/identity/protocols/OAuth2


invocation of our syncMessages function in the promise chaining below.

 
2. Below is our implementation of the syncMessages function. The first parameter, “full”, 

determines whether or not we do a full sync or partial sync via the gmail API. First, we 
use our gmail-sync-api NPM package to authorize with our authentication token, then we 
either do a full sync for first-time setup, or partial for subsequent syncs.

 
 
Additional Resources: 



● Gmail API Sync npm package 
● Gmail API Guide for Sync  

 
 
Step 10 - Inbound Message Handling 

1. Now that our watcher is synced up with the inbox itself, we can handle each new 
message that comes in. In order to set this up, we have to first set up a subscription 
handler that triggers whenever a message is received. 

 
2. Setup the subscriber in a Promise chain to ensure that the inbox sync process has 

completed, so you can store the latest historyId before handling the messages. 
3. For any message that isn’t associated with jobcent, we acknowledge the message 

without taking any further action. We also ignore any message ID that we have already 
received. Sometimes an existing message will trigger the subscriber upon the initial 
setup process, creating the need for this logic. 

https://www.npmjs.com/package/gmail-api-sync
https://developers.google.com/gmail/api/guides/sync


4. Store the current history id as the first new message that we received and do a partial 
synchronisation to deal with any influx of messages and deal with each of them. 

5. Mark each message as already processed after we have dealt with it.

 
6. The function in the screenshot below contains the logic for “dealNewMessage”, which 

determines whether or not jobCents are being exchanged.  
i. We first get all the relevant messages from the gmail API based on the message 

options. 
ii. Then, we go through the headers in the email to check if it is in fact cc’d to 

jobcent@ncnt.io​ or sent directly to ​jobcent@ncnt.io​. 
1. If jobCent is cc’d, we will attempt to send one jobCent from the sender to 

the receiver.  
2. If jobCent is the receiver directly, we are running a promotion such that if 

the user has never had a jobCent, they will be given one for free. 
iii. We also check if there are multiple addresses being sent to (that is multiTo) and 

if they are, then we send an error email below.

mailto:jobcent@ncnt.io
mailto:jobcent@ncnt.io


 
 
Additional Resources: 

● Google PubSub Event Subscriber Documentation 
● Javascript Regular Expressions Guide  

 
PRO-TIP: ​Note that we used a regex expression (/@/g) in the match above, read more about 
regex expressions in the link above - they are very powerful and useful (more than Ctrl-F :))  
 
 
Step 11 - Transaction Processing 

https://cloud.google.com/pubsub/docs/subscriber
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions


PLACEHOLDER FOR AFTER THE JOBCENT REFACTOR TO 
ACCOMMODATE NEW SDK CHANGES 
 
 
Step 12 - Sending jobCents! 

a. We’re almost ready to send emails! First, develop the html templates for the emails sent 
by the jobCent server. You can view an example ​here​.  

b. Finally, write the function for sending the email. In our function in the screenshot below, 
you can see we pass in the receiver of the email and the HTML file template to be sent, 
since this will vary depending on the success of the transaction itself. We use the file 
reader in node to append the appropriate email headers to the HTML.

 
c.  Feel free to get creative with your email templates! Here is an example of ours: 

 
 

 
 

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/receivedJobCent.html


 
 
Additional Resources: 
Node.js readFile Documentation  
Sending Emails Through the Gmail API  

https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback
https://developers.google.com/gmail/api/guides/sending

