How to Build the jobCent Application Using Our Developer Tools

This walkthrough will guide how to build your own jobCent Application.

You can use this to recreate our app, or modify these steps as needed to accommodate your
own application ideas.

Step 1 - Install and Setup Necessary Packages
To build this project we need to install the following tools and libraries.
1. PostgreSQL:
a. Use this resource to gain access to the PSQL shell terminal
b. Set defaults as follows: port=5432, password="dickey”, user="postgres”
2. NodeJsS:
a. Download here.
b. Run the following commands on a separate terminal window to make sure
installation succeeded
i. npm-v
ii. node-v
3. nCent Sandbox Repo:
a. In the terminal, run:
i. git clone https://github.com/ncent/ncent.github.io.git
b. Install the Sandbox dependencies by running the following commands:
i. cd ncent.github.io
i. cd Sandbox/Sandbox\ API
iii. npminstall
4. jobCent Dependencies:
a. Return to the root of the ncent.github.io directory
i. cd../.
b. Go to the Applications folder
i. cd/applications
c. Create a new jobCentEmail folder:
i. mkdir jobCentEmail
i. cdjobCentEmail
iii. Our Folder

d. Initialize client-level node dependencies and packages.json file
i. npminit-y

https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://nodejs.org/en/download/
https://github.com/ncent/ncent.github.io.git
https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail

@ @ mobileWallet — -bash — 111x37

ncntadmins-MacBook-Pro:mobileWallet joeldominic$ npm init -y
Wrote to /Users/joeldominic/Desktop/mobileWallet/package.json:

{

"name": "mobilewWallet",

“version": "1.0.0",

rdescription®s ™",

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

+
"keywords": [],
vauthor": "
"license": "ISC"

Update available > 6.4.0
Run to update

ncntadmins-MacBook-Pro:mobileWallet joeldominic$ |

e. Install the nCent SDK:
i. Inyourfiles, to use the SDK, just write “const ncentSDK =
require(‘{path_to_nCentSDK.js}), which is located here

Additional Resources:
e nCent SDK installation tutorial
e Install PostgreSQL & Setup First Database Tutorial
e nCent Sandbox repository

Pro tip: npm install --save will automatically save anything you npm install to the dependency
section of your package.json file

Step 2 - Setup our Sandbox Environment Database Locally

Test your application using a local instance of our Sandbox.
1. Open PSQL shell and login with the permissions you set up in step 2
2. List all the databases by the following command in the shell using the following
command:
a. \l
3. Create a database instance for the Sandbox with the command:
a. CREATE DATABASE “ncnt-dev”;

https://github.com/ncent/ncent.github.io/blob/master/SDK/source/ncentSDK.js
https://youtu.be/Z4jYSvmXuZg
https://www.youtube.com/watch?v=xaWlS9HtWYw
https://github.com/ncent/ncent.github.io.git
https://github.com/ncent/ncent.github.io/tree/master/Sandbox

@ an — psgl « runpsgl.sh — 68x22

Last login: Wed Aug 15 16:56:55 on ttys@el |
Williams-MacBook-Pro-2:~ an$ /Library/PostgreSQL/18/scripts/runpsql. |
sh; exit i
Server [localhostl]:

Database [postgresl]:

Port [5432]:

Username [postgres]:

Password for user postgres:

psql (10.4) !
Type "help" for help.

postgres=# CREATE DATABASE "ncnt-dev";[J

4. Connect to your newly created database instance:
a. \connect “ncnt-dev”
5. If you configured your permissions in step 2 differently, go to Sandbox/Sandbox\
APIl/config/config.json. Ensure that your information in the “development” object

matches your setup in PostgreSQL
{

"development": {
"username": "postgres",
"password": "dickey",
"database": "ncnt-dev",
"host": "127.0.0.1",
"port": 5432,
"dialect": "postgres"

"username": “postgres",
"password": "dickey",
"database": "ncnt-test",
"host': "127.0.0.1",
"port": 5432,
"dialect": "postgres"

6. Now, let's migrate the schema into the database. In your current terminal, make your
current directory server under Sandbox\ APl and run:
a. ../node_modules/.bin/sequelize db:migrate
7. You should see the following in your terminal:

admins-MacBook-Pro:server admin$../node_modules/.bin/sequelize db:migrate

Sequelize CLI [Node: 8.11.3, CLI: 4.0.0, ORM: 4.37.10]

Loaded configuration file "config/config.json".
Using environment "development".
String based operators are now deprecated. Please use Symbol
based operators for better security, read more at http://docs.sequelizejs.com/ma
nual/tutorial/querying.html#operators

== 201806212308529-create-token-type: migrating =======
== 20180621230529-create-token-type: migrated (0.027s)

== 20180622161155-create-transaction: migrating =======
== 20180622161155-create-transaction: migrated (@.818s)

== 20180622225632-create-wallet: migrating =======
== 20180622225632-create-wallet: migrated (9.013s)

admins-MacBook-Pro:server admin$

8. Then, go back to the PSQL shell and check that you have the right tables:
a. \dt
9. Your terminal should have printed the following:

ncnt—dev=# \dt
List of relations

Schema | Name | Type | Owner
public | SequelizeMeta | table | postgres
public | TokenTypes | table | postgres
public | Transactions | table | postgres
public | Wallets | table | postgres
(4 rows)

10. Run the following command to see that the table is empty:
a. select * from “table_name”;

ncnt-dev=# SELECT % FROM "Wallets";
uuid | wallet_uuid | tokentype_uuid | balance createdAt | updatedAt

(8 rows)

Additional Resources:
e nCent Tutorial video (coming soon)
e PostgreSQL documentation
e PostgreSQL video tutorial

PRO-TIP: Do not use createdb command in the terminal. Create the database only in PSQL
shell with the CREATE DATABASE “database_name” command. Using createdb will make
duplicate databases that are disjointed.

Step 3 - Run the Sandbox and Test the Environment

https://www.postgresql.org/docs/10/static/app-psql.html
https://www.youtube.com/watch?v=jNq5EAb2biY

1. Enter the following command from your Sandbox terminal
a. npm run start:dev {path to your Sandbox}
2. You should see the following:

> ncnt_api@1.8.8 start:dev /Users/admin/Documents/ncnt/Sandbox/Sandbox API
> nodemon ./bin/www

ize d d String based operators are now d
erying.html#operators node_modules/seque e 2/ seq is 3
Executing (default): CREATE TABLE IF NOT EXISTS "TokenTypes" ("Name" VARCHAR(255) NOT NULL UNIQUE, "uuid" UUID NOT NULL , "ExpiryDate" TIMESTAMP WITH TIME ZONE NOT NULL, "sponsor
_uuid" VARCHAR(255) NOT NULL, "totalTokens" INTEGER NOT NULL, "createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT NULL, PRIMARY KEY ("uuid"));
Executing (default): CREATE TABLE IF NOT EXISTS "TokenTypes" ("Name" VARCHAR(255) NOT NULL UNIQUE, "uuid" UUID NOT NULL , "ExpiryDate" TIMESTAMP WITH TIME ZONE NOT NULL, "sponsor
_uuid" VARCHAR(255) NOT NULL, "totalTokens" INTEGER NOT NULL, "createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT NULL, PRIMARY KEY ("uuid"));
Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unigue, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definition FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND

a.attrelid = t.oid AND t.relkind = 'r' and t.relname = 'TokenTypes' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unique, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definitien FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND
a.attrelid = t.oid AND t.relkind = 'r' and t.relname = ‘TokenTypes' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): CREATE TABLE IF NOT EXISTS “Transactions® (“uuid* UUID NOT NULL , “amount* INTEGER NOT NULL, “fromAddress" VARCHAR(258) NOT NULL, “toAddress“ VARCHAR(255) NO
T NULL, “createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT NULL, “tokentype_uuid" UUID REFERENCES “TokenTypes" ("uuid") ON DELETE SET NULL ON
UPDATE CASCADE, PRIMARY KEY ("uuid"));

Executing (default): CREATE TABLE IF NOT EXISTS "Transactions" ("uuid" UUID NOT NULL , "amount" INTEGER NOT NULL, “fromAddress" VARCHAR(255) NOT NULL, "toAddress" VARCHAR(255) NO
T NULL, "createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT NULL, “tokentype_uuid" UUID REFERENCES "TokenTypes" ("uuid") ON DELETE SET NULL ON
UPDATE CASCADE, PRIMARY KEY ("uuid"));

Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unique, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definition FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND
a.attrelid = t.oid AND t.relkind = 'r' and t.relname = 'Transactions' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unigue, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definition FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND
a.attrelid = t.oid AND t.relkind = 'r' and t.relname = 'Transactions' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): CREATE TABLE IF NOT EXISTS “Wallets" ("uuid" UUID NOT NULL , "wallet_uuid" VARCHAR(255) NOT NULL, “tokentype_uuid” UUID NOT NULL DEFAULT '498cclfe-62d3-4863-
a@e0@-a42849p90fff', "balance" INTEGER NOT NULL DEFAULT @8, "createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt" TIMESTAMP WITH TIME ZONE NOT NULL, PRIMARY KEY ("uuid"));
Executing (default): CREATE TABLE IF NOT EXISTS "Wallets" ("uuid" UUID NOT NULL , "wallet_uuid" VARCHAR(255) NOT NULL, "tokentype_uuid" UUID NOT NULL DEFAULT '498cclfe-62d3-4863-
aBeB-a42049b98FFf', "balance" INTEGER NOT NULL DEFAULT @, "createdAt" TIMESTAMP WITH TIME ZONE NOT NULL, "updatedAt® TIMESTAMP WITH TIME ZONE NOT NULL, PRIMARY KEY ("uuid"));
Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unique, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definition FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND
a.attrelid = t.oid AND t.relkind = 'r' and t.relname = 'Wallets' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): SELECT i.relname AS name, ix.indisprimary AS primary, ix.indisunique AS unique, ix.indkey AS indkey, array_agg(a.attnum) as column_indexes, array_agg(a.attna
me) AS column_names, pg_get_indexdef(ix.indexrelid) AS definition FROM pg_class t, pg_class i, pg_index ix, pg_attribute a WHERE t.oid = ix.indrelid AND i.oid = ix.indexrelid AND
a.attrelid = t.oid AND t.relkind = 'r' and t.relname = 'Wallets' GROUP BY i.relname, ix.indexrelid, ix.indisprimary, ix.indisunique, ix.indkey ORDER BY i.relname;

Executing (default): CREATE UNIQUE INDEX "wallets_wallet_uuid_tokentype_uuid® ON "Wallets" (*wallet_uuid", "tokentype_uuid")

Executing (default): CREATE UNIQUE INDEX "wallets_wallet_uuid_tokentype_uuid" ON "Wallets" ("wallet_uuid", "tokentype_uuid")

[nodemo

ease use Symbol based operators for better security, read more at http://docs.sequelizejs.com/manual/tutorial/qu

3. If any errors appear enter the following command:
a. rs
4. Now, open another terminal and go to the SDK directory in your local git repository.
5. Use the following command to test the tables in the database:
a. node test.js
6. You should see the following:

nent-dev=# SELECT * FROM "Wallets";
uuid | wallet_uuid | tokentype_uuid | balance | createdat | updatedat

121.893-07 | 2018-08-15 17:55:21.17-67

8d475eBf-1e78-4b1e-98Fc-eB67 75602803 | GBKEY62GRALCTEZ4XDUKMXDBHHF34CZELUYFFRHWAFICUERXIISNTOFL | dd8f431e-9641-4e57-bFb8-59c06e65b86d | 999998 | 2818-98-15 17:
121.179-87 | 2018-88-15 17:55:21.182-07

9659a687-c752-4626-alc7-F55adad9ce85 | GCZFSFCAISMRO236EVOXSKUS67260CRARYSGKABONBINVIGF TQZKMSVF | ddBFf431e-9661-4e57-bFb-59ccoe65b86d | 10 | 2018-88-15 17:
(2 rows)

7. Now, we will clear the database. In your terminal with the sandbox is running, enter the
following commands:
a. ctrl-c
b. node_modules/.bin/sequelize db:migrate:undo:all
c. node_modules/.bin/sequelize db:migrate
8. Now, your tables will be empty. Check the tables on your shell to see that it is clear.

Resources:
e nCent Video Tutorial on testing the SDK
e Sequalize documentation
e Sequalize tutorial video

PROTIP: Often, when you are testing your backend, it can help to clear your
database for easier visibility into how your data is being handled. In order to do
this, use the command DROP DATABASE <table_name>;

https://youtu.be/n8jKqaoZzZI
http://docs.sequelizejs.com/
https://www.youtube.com/watch?v=qsDvJrGMSUY

Step 4 - Set up the jobCent Database

Like the blockchain technology it mirrors, our Sandbox environment and SDK only manage
wallet address and transaction information, in addition to token stamping. At the application
level, like with jobCent, we need a friendly way to link wallet address with user accounts.
Therefore, we need a jobCent database to store user information such that a user could log in
with an email and password and be linked to wallet credentials.

4 app.s
const express - require('express');
const logger - require('morgan');
const bodyParser - require('body-parser');

const app - express();
app.use(logger('dev'));

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: false}));

app.get('x"', (reg, res)=> res.status(200).send({
message: 'Welcome',
H);

module.exports - app;

We used a Node.js environment for development of jobCent. Make sure to install Node.JS and
npm.
1. Follow our tutorial for setting up a server
a. Make the directory for your project. Include a bin and a server folder
b. Initialize your directory
i. npminit-y
c. If you haven't already, install express, body-parser, and morgan npm packages
i. npm install express body-parser morgan
d. Create an app.js file like the following:

https://github.com/ncent/ncent.github.io/tree/master/Applications/jobCentEmail
https://nodejs.org/en/download/
https://www.youtube.com/watch?time_continue=5&v=2OSkyqxNivM

const express = require('express');
const logger = require('morgan');

const bodyParser = require('body-parser’);

const app = express();

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: false }));

app.get('*', (req, res) => res.status(200).send({
message: 'Welcome to the beginning of nothingness.',

i

module.exports = app;

e. Make a file called ‘www’ in the bin folder like the following:

const http = require('http');

const app = require('../app');

const port = parseInt(process.env.PORT, 10) || 8000;

app.set('port', port);

const server = http.createServer(app);

server.listen(port);

f. Use nodemon so that your server restarts every time you change code
i. npmi-D nodemon
g. Navigate to your package.json file, and under the scripts section add
i. ‘"start:dev": "nodemon ./bin/fwww"
h. Run the following command:
i. npm run start:dev
i. Navigate to localhost:8000 to see your default message
Ensure you have sequelize installed:
a. npm install --save sequelize pg pg-hstore
Initialize sequelize:
a. sequelize init
Create your database:
a. createdb ‘database name’
Create your models:
a. Execute the following command
i. sequelize model:create --name ‘{model_name}’ --attributes title:string
b. This is to create a model with a single string attribute that is the title. You can add
more attributes later on in the file or list them in this command

c. Do this for each model you would like to create
d. This will also create your migrations
6. Migrate your database:
a. sequelize migrate
7. Create controllers:
a. Require the relevant models
b. Develop the functionality of the controller by writing the methods you will need.
c. See example below:

const Bug = require('../models').Bug;
const User = require('../models').User;
const bugUser = require('../models').bugUser;

const bcrypt = require('bcrypt');

const path = require('path');

const ncentSDK = require('../../../../../../SDK/source/');
const ncentSdkInstance = new ncentSDK();

module.exports = {
getBalance(req, res){
return User
.findById(req.session.user.uuid, {
H
«then(user => {
console. log('here');
if (luser) {
return res.status(404).send({
message: 'User Not Found',
b;
}
return new Promise(function(resolve, reject) {
return ncentSdkInstance.getTokenBalance(user.email, '9d91db6b-f33a-4392-a583-a6eal4bd368f "', resolve);
1
.then(data => res.status(200).send(data))
.catch(error=> console.log(error));

b
.catch(error => res.status(400).send(error));
h
updateBugPage(req, res){
res.sendFile(path.resolve(__dirname + '/public/updatebug.html’));
+
logOut(req, res){
if (req.session.user & req.cookies.user_sid) {
res.clearCookie('user_sid');
}
res.sendFile(path.resolve('__dirname' + '../../../../index.html'));

+

8. Create an index.js file in controllers and export all your controllers
a. Navigate to the controllers
i. cdcontrollers
b. Create an index.js file
i. touch index.js
c. Add the following to your index.js file:

N

const controller_name = require('./controller_name’);

module.exports = {
controller_name

2
*Replace controller_name with the name of your controllers. Make sure you do
this for all of your controllers.
9. In the index.js file in the routes folder,
a. Require and define all the controllers

b. Define your routes and the methods they will use from the appropriate
controllers.

c. As an example (where wallet is a model):

const walletController = require('../controllers').wallet;
app.get(‘/getBalance’, walletController.getBalance);

d. You must decide whether it will be a post (for creating new information), put (for
updating information), or get (for retrieving information), then add the route as a
string for the first parameter and the controller_name.functionName as the
second parameter.

10. Require the routes you just made in the app.js file with this code:
require('./server/routes')(app);

Additional Resources:

nCent Labs tutorial on setting up your server

Getting started with node express and postgres using sequelize
Firebase tutorial video

Official docs

Official "getting started" quide

Getting Started with Node.js

PRO-TIP: For speed, you can use a free server such as Firebase to get your app running
quickly.

PRO-TIP 2: Read up on Package.json files to get a better understanding of node and how it
works.

Step 5 - Create and Configure Google Oauth Client

1. Go to Google Cloud Console and sign in with your Google account. You should see
this:

API APIs & Services Dashboard ENABLE APIS AND SERVICES

<% Dashboard
Aproject is needed to view enabled APIs and services Create Project

{ Library

o Credentials
Popular APIs and Services VIEW ALL (208)

sl i
& b = xX-A
Google Drive API Gmail API Maps SDK for Android Cloud Translation API

Google Google Google Google

The Google Drive APl allows Flexible, RESTful access to the Maps for your native Android app. The Google Cloud Translation APl
clients to access resources from user's inbox lets websites and programs
Google Drive integrate with Google Translate.

https://www.youtube.com/watch?time_continue=5&v=2OSkyqxNivM
https://scotch.io/tutorials/getting-started-with-node-express-and-postgres-using-sequelize#generating-models
https://www.youtube.com/watch?v=9kRgVxULbag
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/guides/getting-started-guide/
https://scotch.io/tutorials/getting-started-with-node-express-and-postgres-using-sequelize
https://console.cloud.google.com/apis/

2. Click on the “Create Project” button and name your project

New Project

Project Name *

jobcent

Project ID *
rock-task-213520 C

Project ID can have lowercase letters, digits or hyphens. It must start with a lowercase
letter and end with a letter or number.

Location *

M No organisation BROWSE

Parent organisation or folder

CREATE CANCEL

3. On the window that appears, click “Create Credentials”, then “0Auth client ID” as
shown below:

Credentials

Credentials OAuth consent screen Domain verification

APIs
Credentials

You need credentials to access APIs. Enable the APIs that you
plan to use and then create the credentials that they require.
Depending on the API, you need an API key, a service account or
an OAuth 2.0 client ID. Refer to the API documentation for details.

Create credentials ~

API key
Identifies your project using a simple API key to check quota and access.

OAuth client ID
Requests user consent so your app can access the user's data

Service account key

Enables server-to-server, app-level authentication using robot accounts;

Help me choose
Asks a few questions to help you decide which type of credential to use

4. The following screen will appear, where you will need to fill in your email address and
“Product name shown to users”. The rest is optional.

Credentials

Credentials OAuth consent screen Domain verification

Email address

joeldomjjd@gmail.com

Product name shown to users

jcent

Homepage URL (Optional)
https:// or http://

Product logo URL (Optional)
http://www.example.com/logo.png

This is how your logo will look to end users
Max size: 120x120 px

Privacy policy URL
Optional until you deploy your app

https:// or http://

Terms of service URL (Optional)

https:// or http://

B o

5. Name your client and the application type.

—
— —i
— -

-

The consent screen will be shown to
users whenever you request access
to their private data using your client
ID. 1t will be shown for all
applications registered in this
project.

You must provide an email address
and product name for OAuth to
work.

& Create OAuth client ID

Application type

® Web application
Android Learn more
Chrome App Learn more
iOS Learn more
PlayStation 4
Other

Name

jeent

Restrictions
Enter JavaScript origins, redirect URIs or both

Authorised JavaScript origins
For use with requests from a browser. This is the origin URI of the client application. It cannot contain a wildcard

(https://*.example.com) or a path (https:/example.com/subdir). If you're using a non-standard port, you must include it
in the origin URI.

Authorised redirect URIs

For use with requests from a web server. This is the path in your application that users are redirected to after they have
authenticated with Google. The path will be appended with the authorisation code for access. Must have a protocol.
Cannot contain URL fragments or relative paths. Cannot be a public IP address.

ht

//www.example.com/oauth2cal

6. Click “jcent” to see your client ID, and client secret. It should look like the below
screenshot, and store this information in the jobCentEmail directory you created by

clicking “Download JSON”

& Client ID for Web application ¥ DOWNLOAD JSON C' RESET SECRET
Client ID 540751408963-1iggksjm1khg3rhod3ve9umqgk0061418.apps.googleusercontent.com
Client secret tKLKdiMkF2WijtkbgnZinHQeD
Creation date 16 Aug 2018, 13:31:37

Name

| icent

Restrictions
Enter JavaScript origins, redirect URIs or both

Authorised JavaScript origins
For use with requests from a browser. This is the origin URI of the client application. It cannot contain a wildcard

(https://*.example.com) or a path (https://example.com/subdir). If you're using a non-standard port, you must include it
in the origin URI.

https://www.example.com
Authorised redirect URIs
For use with requests from a web server. This is the path in your application that users are redirected to after they have

authenticated with Google. The path will be appended with the authorisation code for access. Must have a protocol.
Cannot contain URL fragments or relative paths. Cannot be a public IP address.

https://www.example.com/oauth2callback

Additional Resources
e (OAuth2 docs
e How to create Google 0Auth?2 client ID

PRO-TIP: Never reveal your client secret to anyone. (We our client secret above so you can’t
use ours :)

Step 6 - Setup Google Service Account for PubSub

https://developers.google.com/adwords/api/docs/guides/authentication
https://www.youtube.com/watch?v=RpvW6ckK6w0

1. Go back to the console home page and click on create credentials again, but this

time, select “Service Account Key”

Credentials

Credentials OAuth consent screen

Create credentials v [EEbEIEE

AP key
Identifies your project using a simple API key to check quota and access.

Domain verification

OAuth client ID
Requests user consent so your app can access the user's data.

Service account key
Enables server-to-server, app-level authentication using robot accounts.

Help me choose
Asks a few questions to help you decide which type of credential to use

tion for details.

Client ID

540751408963-1iqgksjm1khg3rhod3ve9umqk0061418.apps.googleusercontent.com

2. Configure as follows and press create - you would now have a json file

downloaded - store that in jobCentEmail.

a. Do not share this either - it contains the private key to your service account

& Create service account key

Service account

New service account ¥

Service account name Role

jobcent Security Reviewer v

Service account ID Selected
jobcent @jobcent-213520.iam.gs / Security Reviewer
Key type Project
Downloads a file that contains the private key. Store the file secure)
cannot be recovered if lost. App Engine
® JSON BigQuery
Recommended
P12 Billing
For backward compatibility with code using the P12 format Cloud IAP
Cloud SQL
Cloud Security Scanner
Cloud Trace
Datastore

Error Reporting
1AM

Logging
Monitoring

Organisation Policy

Manage roles

Additional Resources
e Setting up Google Play API access
e Set up an APl account for 0Auth2

e Creating and Using Service Accounts video

v v v v v v v v Vv VvVvvVvwvyw

+/ Security Reviewer

PRO-TIP: Read up on PubSub in this link: https://cloud.google.com/pubsub/docs/overview

[§]

https://developers.google.com/android-publisher/getting_started#setting_up_api_access_clients
https://documentation.brightspace.com/EN/integrations/google_apps/admin/api_project_service_account.htm
https://www.youtube.com/watch?v=tSnzoW4RlaQ
https://cloud.google.com/pubsub/docs/overview

Step 7 - Setup Primary jobCent Script

1.

Install and initialize Google Cloud SDK
a. Download the Google Cloud SDK
b. Add cloud SDK tools to your path
i. ‘./google-cloud-sdk/install.sh’
c. Restart your terminal
d. Run the following in your terminal
i. gcloud init
e. Accept the option to log in using your Google user account
f. Select the project (if you only have one, it will be chosen for you)
Create a pubSub topic/subscription by running the following commands
(replacing appropriate placeholders with desired names):
gcloud pubsub topics create myTopic
gcloud pubsub subscriptions create --topic myTopic mySubscription

gcloud pubsub topics publish myTopic --message "hello"
gcloud pubsub subscriptions pull --auto-ack mySubscription

Now we are ready to create our index.js in the jobCentEmail directory and configure it as
below:

https://cloud.google.com/sdk/docs/quickstart-macos

const express = require('express');

const fetch = require("isomorphic-fetch");

const fs = require("fs");

const opn = require('opn');

const PubSub = require(’@google-cloud/pubsub’); //must use gcloud init / install, read google cloud SDK for more info
const gmailApiSync = require('gmail-api-sync');

const pubsub = new PubSub({
keyFilename: './JobCent-850fe@fe5e43.json’
i
const subscriptionName = 'projects/PROJECT_ID/subscriptions/emailWatcher';
const subscription = pubsub.subscription(subscriptionName);

const gmailPort = 3001;
const app = express();

const scopes = [

'https://mail.google.com/",
'https://www.googleapis.com/auth/gmail.modify"’,

'https://www.googleapis.com/auth/gmail. readonly’,
'https://www.googleapis.com/auth/gmail.send"’

1;

const {google} = require('googleapis');
const gmailClass = google.gmail('vl');
const oauth2Client = new google.auth.0Auth2(

OAUTH CLIENT ID

CLIENT_SECRET

*http://localhost:3001/"
);
//const oauthUrl = oauth2Client.generateAuthurl({access_type: ‘offline', scope: scopes});

gmailApiSync.setClientSecretsFile('./client_secret.json');

const ncentSDK = require('../../SDK/source/');
const ncentSdkInstance = new ncentSDK();

Here is a link to our index.js

4. For SERVICE_FILE, put the name of the JSON file you downloaded in Step 6 for the
Google service account.

5. For PROJECT_ID, put the id of your project which you can find on the Google Developer
console.

6. For OAUTH CLIENT ID and CLIENT_SECRET, put the client id and secret that you saw
when you pressed jcent in Step 5 earlier.

7. Run the following for any modules required above

a. npm install --save {module_name}

Additional Resources:
e Ourindex.js Implementation
e RequireJS Documentation
o Google Cloud SDK Quick Start - Mac
o Google Cloud SDK Quickstart - CLI

PRO-TIP: It is best to write your “requires” into const variables, so that they are not able to be
mutated. This is a common best practice when writing Javascript code.

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js
https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js
https://requirejs.org/
https://cloud.google.com/sdk/docs/quickstart-macos
https://cloud.google.com/pubsub/docs/quickstart-cli

Step 8 - Initializing jobCent

1. First, create a function called “main” in your index.js file.

2. We will then initialize the application by stamping the jobCent token, followed by seeding
the proper wallets with tokens.

3. For integration with gmail, we need to open the authentication url for user consent and
login and respond to it with a callback function. We named ours
“‘getHomePageCallback”.

4. Finally, we need to start listening on the gmail port.

5. When steps 1-4 are completed, your code should look something like the below
screenshot, where “initdJobCent” is an abstracted function for stamping the token and
seeding the wallets (more detail below):

function main() {
initJobCent();
opn(oauthurl);
app.get('/', getHomePageCallback);
app.listen(gmailPort, (err) => {
if (err) {

console. log(failed to listen to ${gmailPort}’, err);

3
}

main();

6. We set up our “initdJobCent” function - as seen below - by stamping the token and storing
“token_id” as a global variable

function initJobCent() {
return new Promise(function(resolve, reject) {
return ncentSdkInstance.stampToken('jobcent@ncnt.io', 'jobCent', 1000000, '2021', resolve);
1)

.then(function(response) {

token_id = response.data["tokenTypeResponseData"] ["uuid"];

})
.then(function() {

return createAndTransfer('mb@ncnt.io', 2000);
3

7. Remember to declare your “token_id” above the function closure so that it stores the ID
globally across the file.

8. Once the auth url is opened for the user and the user acknowledges the request, we can
request an access token with the code that we get from the response. We then initialize

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/index.js

the email watcher.

function getHomePageCallback (request, response) {
getOauthTokens(request.query.code)
.then(function(tokens) {
setOauthCredentials(tokens);

gmail = google.gmail({version: 'v1', oauth2Client});

initEmailWatcher();
response.send("Done with authentication.™);
}, function(reason){

console. log("get auth tokens failed" + reason)
});

9. A closer look at setting the credentials for the oauth2Client:

function getOauthTokens (tokenCode) {
//console. log("get auth tokens");
return oauth2Client.getToken(tokenCode);

function setOauthCredentials () {
//console.log("set auth credentials");
oauth2Client.credentials = tokens.tokens:

10. A closer look at setting up the gmail watcher. Ensure that under topicName,
projects/PROJECT _ID is your own project id.

function initEmailWatcher() {
let options = {
userld: 'me',
auth: oauth2Client,
resource: {
labelIds: ['INBOX'],
topicName: "projects/jobcent-210021/topics/emailTransaction"

s
gmail.users.watch(options, function (err, res) {
if (err) {
//console.log(err);
return;

Additional Resources:
o Gmail APl Reference
e Using OAuth 2.0 to Access Google APIs

Step 9 - Syncing Messages with Email History
1. After we get the Oauth credentials, we need to sync the existing inbox messages with
the email history. Each time a new email is received, the ID of the email history gets
updated, so we need to make sure that this record is always up to date. You can see our

https://developers.google.com/gmail/api/v1/reference/users/messages#resource
https://developers.google.com/identity/protocols/OAuth2

invocation of our syncMessages function in the promise chaining below.

function getHomePageCallback (request, response) {
const fullSyncOptions = {query: 'from: ncnt.io'};
getOauthTokens(request.query.code)
.then(function(tokens) {
setOauthCredentials(tokens);
gmail = google.gmail({version: 'vl1l', oauth2Client});

initEmailWatcher();
syncMessages(true, fullSyncOptions, resolve, reject)ﬂ
response.send("Done with authentication.");
}, function(reason){
console. log("get auth tokens failed" + reason)

2. Below is our implementation of the syncMessages function. The first parameter, “full”,
determines whether or not we do a full sync or partial sync via the gmail API. First, we
use our gmail-sync-api NPM package to authorize with our authentication token, then we
either do a full sync for first-time setup, or partial for subsequent syncs.

function syncMessages(full, syncOptions, resolve, reject) {
gmailApiSync.authorizeWithToken(tkn, function (err, oauth) {
if (err) {
return reject(err);
+
else {
if (full) {
gmailApiSync.queryMessages(oauth, syncOptions, function (err, response) {
if (err) {
return reject(err);
}
return resolve(response);
//console. log(response) ;

b;
} else {
gmailApiSync.syncMessages(oauth, syncOptions, function (err, response) {
if (err) {
return reject(err);

+
//console. log(response.emails);
return resolve(response);

Additional Resources:

e Gmail APl Sync npm package
e Gmail APl Guide for Sync

Step 10 - Inbound Message Handling
1. Now that our watcher is synced up with the inbox itself, we can handle each new
message that comes in. In order to set this up, we have to first set up a subscription
handler that triggers whenever a message is received.

function getHomePageCallback (request, response) {
const fullSyncOptions = {query: 'from: ncnt.io'};
getOauthTokens(request.query.code)
.then(function(tokens) {
setOauthCredentials(tokens);
gmail = google.gmail({version: 'v1l', oauth2Client});
initEmailWatcher();
hew Promise(function(resolve, reject) {
syncMessages (true, fullSyncOptions, resolve, reject);
)
.then(function(response) {
console. log(response);
startHistoryId = response.historyId;
console. log(startHistoryId);
subscription.on(message’, messageHandler);
})
.catch(function (error) {
console. log(error);
})
response.send("Done with authentication.");
}, function(reason){
console. log("get auth tokens failed" + reason)
H;

2. Setup the subscriber in a Promise chain to ensure that the inbox sync process has
completed, so you can store the latest historyld before handling the messages.

3. For any message that isn’t associated with jobcent, we acknowledge the message
without taking any further action. We also ignore any message ID that we have already
received. Sometimes an existing message will trigger the subscriber upon the initial
setup process, creating the need for this logic.

https://www.npmjs.com/package/gmail-api-sync
https://developers.google.com/gmail/api/guides/sync

4. Store the current history id as the first new message that we received and do a partial
synchronisation to deal with any influx of messages and deal with each of them.
5. Mark each message as already processed after we have dealt with it.

1 messageHandler(message) {
t messageJSON = JSON.parse(message.data);

if(message]SON.emailAddress !== 'jobcent@ncnt.io') {
message.ack();
return;
}
if ((message.id in alreadyProcessed)) return;
printMessage(message) ;
currHistoryId = message]SON.historyld;
if (startHistoryId === t ed || currHistoryld < startHistoryId) {
message.ack();
return;
}
console.log("startHistoryId: " + startHistoryld + ", currHistoryId: " + currHistoryId);
t syncOptions = {historyId: startHistoryId};
Promise(function(resolve, reject) {
return syncMessages(false, syncOptions, resolve, reject);
1
. then(fur n(response){
if (response.emails.length !== @) {
for (i = 0; i < response.emails.length; i++) {
z msgOptions = {'userId': messageJSON.emailAddress, 'auth': oauth2Client, 'id': response.emails[i].id};

alreadyProcessed [response.emails[i].id] = 1;
dealNewMessage(msgOptions, message);

}
} else {
console. log("array is empty again");

function(error) {
console.log(error);
return;
1
startHistoryId = currHistoryId;

ks

6. The function in the screenshot below contains the logic for “dealNewMessage”, which
determines whether or not jobCents are being exchanged.
i. We first get all the relevant messages from the gmail API based on the message
options.
i. Then, we go through the headers in the email to check if it is in fact cc’d to
jobcent@ncnt.io or sent directly to jobcent@ncnt.io.
1. If jobCent is cc’d, we will attempt to send one jobCent from the sender to
the receiver.
2. If jobCent is the receiver directly, we are running a promotion such that if
the user has never had a jobCent, they will be given one for free.
iii. We also check if there are multiple addresses being sent to (that is multiTo) and
if they are, then we send an error email below.

mailto:jobcent@ncnt.io
mailto:jobcent@ncnt.io

console.log("out of loop" + ", FromEmail: " + fromEmail + ", ToEmail: " + toEmail +
", ccFound: " + ccFound + ", toJbCent: " + toJbCent);
if (((ccFound 1) && !toJbCent) || toEmail fromEmail) {
return;
¥
if (multiTo) [
console.log("Too many addresses by " + fromEmail + " to " + toEmail
sendEmail(fromEmail, './manyAddressesnew.html', "Error: You've entered too many addresses in the To line");
return;

]
console.log('\nSending one jobCent from ' + fromEmail + ' to ' + toEmail);
processTransaction(toEmail, fromEmail);

o)
.catch(on(error){
console. log(error.message) ;

o)

H)

.then(function() {
console. log("message acknowledge
message.ack();
return;

1

.catch(function(error){
console. log(error.message) ;
return;

1h;

dealNewMessage (msgOptions, message) {
toEmail = '';
t fromEmail = '
v Promise (function(r re IR
gmail.users.messages.get(msgOptions)
. then(func 1(response){
console.log("getresponse: " + response.data.id
let ccFound
multiTo
et tolbCent = fa X
et headers = response.data.payload.headers;
for(idx in headers) {
if (headers[idx].name === 'To') {
console.log("full headers: " + headers[idx].value);
console.log("first header: " + headers[idx].value.substring(1, headers[idx].value.index0f('<') - 1));
if (1((((headers[idx].value.match(/@/g) || [1).length 2)
&& (headers[idx].value.match(/</g)) && (headers[idx].value.substring(1, headers[idx].value.index0f('<') - 1)
getEmailString(headers[idx]))) || ((headers[idx].value.match(/@/g) || [1).length 1))) multiTo =
toEmail = getEmailString(headers[idx]);
let stIdx = headers[idx].value.index0f('jobcent@ncnt.io");
if (stIdx !== -1) toJbCent = t
}
if (headers[idx].name "From") {
fromEmail = getEmailString(headers[idx]);
}
if (headers[idx].name === "Cc") {
let startIdx = headers[idx].value.indexOf("'jobcent@ncnt.io');
if (startIdx ! il)) <€
ccFound = 1;
} else {
ccFound = 0;
}
}
if (toEmail ! "' & fromEmail ! '' & ccFound !

Additional Resources:
o Google PubSub Event Subscriber Documentation
e Javascript Reqular Expressions Guide

PRO-TIP: Note that we used a regex expression (/@/g) in the match above, read more about
regex expressions in the link above - they are very powerful and useful (more than Ctrl-F :))

Step 11 - Transaction Processing

https://cloud.google.com/pubsub/docs/subscriber
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

PLACEHOLDER FOR AFTER THE JOBCENT REFACTOR TO
ACCOMMODATE NEW SDK CHANGES

Step 12 - Sending jobCents!

a. We’re almost ready to send emails! First, develop the html templates for the emails sent
by the jobCent server. You can view an example here.

b. Finally, write the function for sending the email. In our function in the screenshot below,
you can see we pass in the receiver of the email and the HTML file template to be sent,
since this will vary depending on the success of the transaction itself. We use the file
reader in node to append the appropriate email headers to the HTML.

. sendEmail = (receiver, file, subject) => {
.readFile(file, (err,data) => {
let email_lines = [];

email_lines.push('From: "nCnt Hiring" <jobcent@ncnt.io>');
email_lines.push('To: ' + receiver);
email_lines.push('Content-type: text/html;charset=utf-8');
email_lines.push('MIME-Version: 1.0');
email_lines.push('Subject: ' + subject);
email_lines.push('');

email_lines.push(data);
let email = email_lines.join('\r\n').trim();

let base64EncodedEmail = new Buffer(email).toString('base64');
base64EncodedEmail = base64EncodedEmail.replace(/\+/g, '-').replace(/\//qg

gmailClass.users.messages.send({
auth: oauth2Client,
userId: 'me’',
resource: {
raw: base64EncodedEmail

}
)

b))

c. Feelfree to get creative with your email templates! Here is an example of ours:

https://github.com/ncent/ncent.github.io/blob/master/Applications/jobCentEmail/receivedJobCent.html

Congratulations! You've received a jobCent.

Get paid to help nCent find our all-stars:

e Apply for a job at nCent Labs
» Get an extra $10,000 if you get hired
« [f you're not looking for a job, send it to a friend:
1. Emailing them and cc'ing jobcent@ncnt.io
2. If they get hired, you get $5,000 and they get $10,000
3. If they send to a friend that gets hired, you get $2,500,
they get $5,000, and their friend gets $10,000

Come help us build the future in Redwood City!

Apply Now

Best,
nCent Labs

Connect with us.

Phone: 650.503.8785
Email: kk@ncnt.io

To find out more about jobCent, please navigate to jobCent.io

Additional Resources:
Node.js readFile Documentation
Sending Emails Through the Gmail API

https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback
https://developers.google.com/gmail/api/guides/sending

